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ABSTRACT
In this extended abstract, we carefully examine a purported
counterexample to a postulate of iterated belief revision. We
suggest that the example is better seen as a failure to ap-
ply the theory of belief revision in sufficient detail. The
main contribution is conceptual aiming at the literature on
the philosophical foundations of the AGM theory of belief
revision [1]. Our discussion is centered around the obser-
vation that it is often unclear whether a specific example
is a “genuine” counterexample to an abstract theory or a
misapplication of that theory to a concrete case.

1. INTRODUCTION
Starting with the seminal paper [1], the so-called AGM the-
ory of belief revision has been extensively studied by logi-
cians, computer scientists, and philosophers. The general
setup is well-known, and we review it here to fix ideas and
notation.

Let K be a belief set, a set of propositional formulae closed
under classical consequence representing an agent’s initial
collection of beliefs. Given a belief ϕ that the agent has
acquired, the set K ∗ ϕ represents the agent’s collection of
beliefs upon acquiring ϕ. A central project in the theory of
belief revision is to study constraints on functions ∗mapping
a belief set K and a propositional formula ϕ to a new belief
set K ∗ ϕ. For reference, the key AGM postulates are listed
in the Appendix (Section A). This simple framework has
been analyzed, extended, and itself revised in various ways
(see [2] for a survey of this literature), and much has been
written about the status of its philosophical foundations (cf.
[10, 21, 20]).

The basic AGM theory does not explicitly address the
question of how to respond to a sequence of belief changes.
The only salient constraint on iterated revision implied by
the eight AGM postulates is the requirement that (K ∗ϕ) ∗
ψ ⊆ K ∗ (ϕ ∧ ψ) provided ¬ψ 6∈ K ∗ ϕ. 1 However, if
¬ψ ∈ K ∗ ϕ, there is no constraint on (K ∗ ϕ) ∗ ψ. Various
authors have attempted to rectify this situation, proposing
additional rationality constraints on belief revision given a

1By AGM 7 (K ∗ (ϕ ∧ ψ) ⊆ Cn(K ∗ ϕ ∪ {ψ})) and AGM 8
(¬ψ 6∈ K ∗ϕ then Cn(K ∗ϕ∪ {ψ}) ⊆ K ∗ (ϕ∧ψ)), we have
K ∗ (ϕ ∧ ψ) = Cn(K ∗ ϕ ∪ {ψ}) provided that ¬ψ 6∈ K ∗ ϕ,
whence by an application of AGM 3 ((K ∗ϕ) ∗ψ ⊆ Cn((K ∗
ϕ) ∪ {ψ})), it follows that (K ∗ ϕ) ∗ ψ ⊆ Cn(K ∗ ϕ ∪ {ψ}) if
¬ψ 6∈ K ∗ ϕ.
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sequence of input beliefs [8, 9, 5, 15, 16, 18, 21, 6]. Two
postulates which have been extensively discussed in the lit-
erature are the following constraints:

I1 If ψ ∈ Cn({ϕ}) then (K ∗ ψ) ∗ ϕ = K ∗ ϕ

I2 If ¬ψ ∈ Cn({ϕ}) then (K ∗ ϕ) ∗ ψ = K ∗ ψ

Each of these postulates have some intuitive appeal. Pos-
tulate I1 demands if ϕ → ψ is a theorem (with respect to
the background theory), then first learning ψ followed by the
more specific information ϕ is equivalent to directly learning
the more specific information ϕ. Postulate I2 demands that
first learning ϕ followed by learning a piece of information
ψ incompatible with ϕ is the same as simply learning ψ out-
right. So, for example, first learning ϕ and then ¬ϕ should
result in the same belief state as directly learning ¬ϕ. 2

Many recent developments in this area have been offered
on the basis of analyses of concrete examples. These range
from toy examples—such as the infamous muddy children
puzzle, the Monty Hall problem, and the Judy Benjamin
problem—to everyday examples of social interaction. Dif-
ferent frameworks are then judged, in part, on how well
they conform to the analyst’s intuitions about the perceived
relevant set of examples. This raises an important issue: Im-
plicit assumptions about what the agents know and believe
about the situation being modeled often guide the analyst’s
intuitions. In many cases, it is crucial to make these under-
lying assumptions explicit.

The following simple example illustrates the type of im-
plicit assumption that we have in mind. There are two
opaque boxes, labeled 1 and 2, each containing a coin. The
believer is interested in the status of the coins in each box.
Suppose that Ann is an expert on the status (heads up or
tails up) of the coin in box 1 and that Bob is an expert on the
status (heads up or tails up) of the coin in box 2. Currently
the believer under consideration does not have an opinion
about whether the coins are lying heads up or tails up in
the boxes; more specifically, the believer thinks that all four
possibilities are equally plausible. Suppose that both Ann
and Bob report that their respective coins are lying tails

2Of course, one might object to this on the basis of the ob-
servation that if the believer is in a situation in which she
is receiving inconsistent evidence, then she should recognize
this and accordingly adopt beliefs about the source(s) of in-
formation. This issue of higher order evidence is interesting
(cf. [7]), but we set it aside in this paper. We are interested
in situations in which the believer never loses her trust in
the process generating evidence. AGM theory may be the
only theory applicable in such situations.



up. Since both experts are trusted, this is what the believer
believes. Now further suppose that there is a third expert,
Charles, who is considered more reliable than both Ann and
Bob. What should the believer think about the coin in box
2 after receiving a report from Charles that the coin in box
1 is lying heads up?

Of course, an answer to this question depends in part on
the believer’s initial opinions about the relationship between
the coins in the two boxes. If the believer initially thinks
that the status of the coins are independent and that the
reports from Ann and Bob are independent, then she should
believe that the coin in box 2 is lying tails up. However, if
she has reason to think that the coins, or reports about the
coins, are somehow correlated, upon learning that the coin
in box 1 is lying heads up, she may be justified in changing
her belief about the status of the coin in box 2.

Robert Stalnaker [21] has discussed the potential role that
such meta-information, as illustrated in the above example,
plays in the evaluation of proposed counterexamples to the
AGM postulates. The general message is that once salient
meta-information has been made explicit, many of the pur-
ported counterexamples to the AGM theory of belief revision
do not demonstrate a failure of the theory itself, but rather
a failure to apply the theory correctly and include all the
relevant components in the model. 3 After an illuminat-
ing discussion of a number of well-known counterexamples
to the AGM postulates, Stalnaker proposes two “genuine”
counterexamples to postulates I1 and I2 for the theory of
iterated belief revision. The conclusion Stalnaker draws in
his discussion is that“. . . little of substance can be said about
constraints on iterated belief revision at a level of abstrac-
tion that lacks the resources for explicit representation of
meta-information” (pg. 189).

In this extended abstract, we carefully examine one of
Stalnaker’s purported counterexamples (Section 4), provide
a model for it that complies with the AGM postulates, sug-
gesting that it is again better seen as a failure to apply the
theory of belief revision in sufficient detail. We end with a
critical discussion of the opposition between genuine coun-
terexamples and misapplications of the theory (Section 6).

2. STALNAKER’S EXAMPLE
An indicated in the introduction, Stalnaker [21] proposes
counterexamples to both postulates I1 and I2. In this ex-
tended abstract, we only have space to discuss one of the
examples (the full paper has an extensive discussion of both
examples). We discuss an example which is “clearer and a

3This is not to say that there are no genuine conceptual
problems with the AGM theory of belief revision. The point
raised here is that it is often unclear what exactly a spe-
cific counterexample to an AGM postulate demonstrates
about the abstract theory of belief revision. This is nicely
explained by Stalnaker in his analysis of Hans Rott’s well-
known counterexample to various AGM postulates (see [20]):

... Rott seems to take the point about meta-
information to explain why the example conflicts
with the theoretical principles, whereas I want
to conclude that it shows why the example does
not conflict with the theoretical principles, since
I take the relevance of the meta-information to
show that the conditions for applying the prin-
ciples in question are not met by the example.
asdf (pg. 204)

more decisive problem” for I2.

Example. Suppose that two fair coins are flipped and
placed in two boxes. Two independent and reliable observers
deliver reports about the status (heads up or tails up) of the
coins in the opaque boxes. On the one hand, Alice reports
that the coin in box 1 is lying heads up, and on the other
hand, Bert reports that the coin in box 2 is lying heads up.

Two new independent witnesses, whose reliability trumps
that of Alice’s and Bert’s, provide additional reports on the
status of the coins. Carla reports that the coin in box 1
is lying tails up, and Dora reports that the coin in box 2 is
lying tails up. Finally, Elmer, a third witness considered the
most reliable overall, reports that the coin in box 1 is lying
heads up.

Let Hi be the proposition expressing the statement that
the coin in box i is lying heads up (i = 1, 2). Similarly, for
i = 1, 2, let Ti be the proposition expressing the statement
that the coin in box i is lying tails up. After the first belief
revision, the belief set is K′ = K ∗(H1∧H2), where K is the
agent’s original set of beliefs. After receiving the reports, the
belief set is K′ ∗ (T1 ∧T2) ∗H1. As Stalnaker suggests, since
Elmer’s report is irrelevant to the status of the coin in box 2,
it seems natural to assume that H1∧T2 ∈ K′∗(T1∧T2)∗H1.

Now to the hitch. Since (T1 ∧ T2) → ¬H1 is a theorem
(given the background theory), by I2 it follows that K′ ∗
(T1 ∧ T2) ∗H1 = K′ ∗H1. Yet since H1 ∧H2 ∈ K′ and H1

is consistent with H2, we must have H1 ∧ H2 ∈ K′ ∗ H1,
which yields a conflict with the assumption that H1 ∧ T2 ∈
K′ ∗ (T1 ∧ T2) ∗H1.

Stalnaker diagnoses the situation as follows:

...[Postulate I2] directs us to take back the total-
ity of any information that is overturned. Specif-
ically, if we first receive information α, and then
receive information that conflicts with α, we should
return to the belief state we were previously in,
before learning α. But this directive is too strong.
Even if the new information conflicts with the
information just received, it need not necessarily
cast doubt on all of that information.
asdf (pg. 207–208)

It seems that, for lack of independent guidelines of how we
must identify the component of the evidence that needs over-
turning to accommodate the new information, the epistemic
advice provided by AGM conflicts with the intuitively cor-
rect answer.

But what are we to do with this apparent conflict? In
what follows we attempt to model Stalnaker’s puzzling ex-
ample. This is a conceptual paper aiming to contribute to
the literature on the philosophical foundations of the theory
of belief revision (cf. [10, 21, 20]). Accordingly, it is not
our main goal to extend this theory, resolve the problems,
and be done with it. Our focus lies rather on the fact that
it is unclear how to appropriately respond to a purported
counterexample to a postulate of iterated belief revision. To
illustrate, the foregoing example may be regarded as demon-
strating either:

1. There is no suitable way to formalize the scenario in
such a way that the AGM postulates (possibly includ-
ing postulates of iterated belief revision) can be saved;



2. The AGM framework can be made to agree with the
scenario but does not furnish a systematic way to for-
malize the relevant meta-information; or

3. There is a suitable and systematic way to make the
meta-information explicit, but this is something that
the AGM framework cannot properly accommodate.

The first response is very drastic and, indeed, the models
presented in the next section may be taken to show that
the meta-information driving the belief change can be made
suitably explicit. The second response to the example is
already well-appreciated in the literature on belief revision
(cf. the discussion of sources of evidence in [6] and “ontol-
ogy” in [10]). Of interest to us for this paper is the third
response, which is concerned with the absence of guidelines
for applying the theory of belief revision.

In other words, we suggest that there is a problem with
the AGM theory, and that this problem arises because a
clear distinction between counterexample and misapplica-
tion has yet to be drawn. It is not clear from the theory of
belief revision how its applications are supposed to be orga-
nized, and hence it is not clear whether the examples reveal
shortcomings in the theory or rather in its application. Stal-
naker suggests that his purported counterexamples turn on
independence:

There are different kinds of independence—conceptual,
causal and epistemic—that interact, and one might
be able to say more about constraints on ratio-
nal belief revision if one had a model theory in
which causal-counterfactual and epistemic infor-
mation could both be represented. There are fa-
miliar problems, both technical and philosoph-
ical, that arise when one tries to make meta-
information explicit, since it is self-locating (and
auto-epistemic) information, and information about
changing states of the world. (pg. 208)

Part of our response is to show how models from AGM belief
revision can accommodate such considerations. In addition,
we offer a different perspective on the third response to the
counterexample.

This shift in perspective has a positive part and a negative
part. On the one hand, we argue that probabilistic models
can facilitate an explicit incorporation of meta-information
underlying rational belief changes for many examples. Fur-
thermore, these models can offer principled ways to distin-
guish genuine counterexamples from misapplications of the
AGM theory of belief revision. In the example at hand, the
salient categories are the event and report structure, and the
belief states that range over them.

On the other hand, the connection between AGM theory
and probabilistic models of belief revision offers an oppor-
tunity to exploit various insights from critical discussions
concerning probabilistic models of belief dynamics. At the
end of our paper, we critically discuss two such insights.
The first insight draws attention to the absence of a gen-
uine belief dynamics in probabilistic models: Bayesian mod-
els and their extensions are completely static. The second
insight draw attention to a relationship with a result due
to [13] identifying situations in which conditioning in so-
called “naive” spaces matches conditioning in so-called “so-
phisticated” spaces (in which the relevant meta-information
is made explicit).

3. A HEURISTIC TREATMENT
We begin with a heuristic treatment of Stalnaker’s coun-
terexample to postulate I2, serving to explain the role that
the Bayesian model of Section 4 plays to respond to Stal-
naker’s challenge to an AGM theory of iterated belief revi-
sion.

The heuristic treatment is cast in the semantic model of
AGM belief revision introduced in Grove’s seminal paper
[12]. The key idea is to describe the belief state of an agent
as a set of possible worlds and a plausibility relation on this
set of states (formally, a plausibility ordering is a reflex-
ive, transitive and well-founded relation). To illustrate, in
the example there are four possible worlds corresponding
to the configurations of the coins in the two boxes. Ini-
tially, the believer considers all the configurations of the
coins equally plausible. The agent believes any proposition
implied by the set of most plausible worlds. A belief revi-
sion policy describes how to modify a plausibility ordering
given a nonempty subset of the set of states (intuitively, this
subset represents a belief that the agent has acquired).

A number of different belief revision policies have been
identified and explored in the literature (cf. [20, 3, 22]). For
our discussion of Stalnaker’s counterexample, we focus on
the so-called radical upgrade belief revision policy: If ϕ
is a set of worlds, the radical upgrade with ϕ, denoted ⇑ϕ,
defines a new plausibility relation as follows: all the states
in ϕ become strictly more plausibility than all the states not
in ϕ, while the ordering for states within ϕ and outside of ϕ
remains the same.

Starting from an initial model in which the believer con-
siders all positions of the coins equally plausible, the belief
changes in Stalnaker’s counterexample can be represented
as follows:

H1H2 T1T2

H1T2 T1H2

M0

T1T2 H1T2

T1H2

H1H2

M1

⇑H1H2

T1H2 H1T2

H1H2

T1T2

M2

⇑T1T2

T1H2

T1T2

H1H2

H1T2

M3

⇑EH1

Interpret this diagram as follows: Each state is labeled by
the position of the coins in the different boxs. The ordering
is represented by the straight lines, with the states at the
bottom the most plausible overall. For example, in model
M2, since the state T1T2 is the most plausible overall, the
agent believes that the coins in both boxs are lying tails up.
Each transition corresponds to a radical upgrade with the
identified set (we write ⇑ w instead of ⇑ {w}, and the last
transition is with the event EH1 = {H1H2, H1T2}).

The above formalization highlights the crucial issue raised
by Stalnaker’s example: A side effect of first learning that



both coins are lying heads up followed by learning that both
coins are lying tails up is that the agent comes to believe that
the coins in the two boxs are correlated. Note that in the
third model M2, the state H1H2 is ranked more plausible
than both H1T2 and T1H2. This is not necessarily problem-
atic provided the agent’s initial beliefs about the learning
situation warrant such a conclusion. However, such meta-
information is not made explicit in the description of the
example. This leaves open the possibility of a counterintu-
itive reading of the example in which it is not rational for
the believer to come to the conclusion that the coins are
correlated.

Our suggestion is not that it is impossible to define a be-
lief revision policy that incorporates the assumption that
the believer takes it for granted that the coins are indepen-
dent. Indeed, the following sequence represents such a belief
revision policy:

H1H2 T1T2

H1T2 T1H2

M0

T1H2 H1T2

T1T2

H1H2

M1

H1H2

T1H2 H1T2

H1H2

T1T2

M2

T1T2

T1H2

T1T2

H1T2

H1H2

M3

EH1

In the above formalization, each time the agent learns some-
thing about the position of the coins, the initial belief that
the position of the coins are independent is retained. This
leaves open the question of whether one can find a defensi-
ble belief revision policy generating such a sequence of belief
changes. The models from sections 4 and 5 demonstrate that
this question has an affirmative answer. The models provide
a systematic way to explicitly describe the meta-information
in the background underlying an application of the AGM
theory of belief revision. However, as we argue in Section
6, this does not entirely resolve the issue that Stalnaker’s
raises.

4. BAYESIAN MODELS
In what follows, we sketch a Bayesian model formalizing
salient meta-information in the example from Section 2. The
model demonstrates that such information can be suitably
captured in terms of a coherent set of revision rules. Of
course, the model may be unsatisfactory to someone seeking
to extend AGM belief revision theory with rules for iteration.
Many Bayesian modeling choices, most notably concerning
the representation of belief, are at odds with AGM theory.
However, as we show in Section 5, the Bayesian model can be
refined to cover belief revision policies in the style of AGM
and, for example, Darwiche and Pearl [9] while retaining the
formalization of salient intuitions. To be sure, we make no

claim to a general model covering all cases and all poten-
tially relevant meta-information. But in the example under
discussion we think that insufficient detail has been offered
to warrant any such claim in the first place.

The Basic Formalization
To fix ideas, a Bayesian model of Example 1 consists of an
algebra over a set of states including all relevant proposi-
tions and a probability function expressing the agent’s be-
liefs about these propositions as held at consecutive stages
of her epistemic development. We lay down this basic struc-
ture, subsequently presenting three related probability func-
tions accommodating meta-information.

The hypotheses at stake in the example concern the results
of coin tosses in the two boxes, denoted Xi

j with i ∈ {0, 1}
for tails up 0 and heads up 1, respectively, and j ∈ {1, 2}
for boxes 1 and 2 respectively (here, for convenience, we use
numerals rather than letters for the boxes). Furthermore,
there are five reports, denoted Rijt, each with i ∈ {0, 1} for
a report of tails up or heads up and j ∈ {1, 2} for boxes 1
and 2, and t ∈ {0, 1, 2, 3} for the four update stages in the
epistemic development of the agent. Letting Xj = {X0

j , X
1
j }

and Rjt = {R0
jt, R

1
jt}, we can write the state space Ω as

Ω = X1 ×X2 × (
∏

t=1,2,3

R1t ×R2t)

Thus a state ω ∈ Ω is of the form

ω = (Xi1
1 , X

i2
2 , R

i3
11, R

i4
21, R

i5
12, R

i6
22, R

i7
13, R

i8
23),

where ik ∈ {0, 1} for each k = 1, . . . , 8. We take the algebra
F to be the power set of Ω. Because reports and coins are
mostly considered in pairs, we will use the abbreviations
Xik = Xi

1 ∩Xk
2 and Ruvt = Ru1t ∩Rv2t.

The beliefs of the agent are represented as probability
functions over this algebra, Pt : F → [0, 1]. Summarizing
the set of reports received up and until stage t by the event
St, and taking X as the proposition of interest, the agent
belief’s are determined by Bayesian conditioning:

Pt(X) = P0(X|St) = P0(X)
P0(St|X)

P0(St)
.

In terms of the example, if we are interested in whether the
coin in box 2 landed heads, X1

2 , the agent’s belief state is a
function of the probability conditional upon the reports of
Alice and Bob, P1(X1

2 ) = P0(X1
2 |R11

1 ).
Since the two coins are fair and independent, the priors are

P0(Xik) = 1
4

for all i, k = 0, 1. We can now fill in the prob-
ability assignments to express the specific meta-information
at stake in the example. The crucial point is that we can set
the initial likelihoods in accordance with different intuitions
about the meta-information in the example.

The reports are independent
In this case, after receiving the reports about the coins, the
agent assigns high probability to the coin in box 1 lying
heads up and the coin in box 2 lying tails up. According to
the example, the the content of the reports are very proba-
ble, while the content of subsequent reports are even more
probable, thereby cancelling out the impact of preceding re-
ports. We can express this in the likelihoods of the hypothe-
ses Xik. For each combination of j and t, let Q be the event



Xi
j ∩Xk

3−j ∩ St−1 ∩Rv(3−j)t. We have:

P0(Rujt | Q) =
1

1 + γt
×

{
1 if u = i,

γt if u 6= i.
(1)

The above expression fixes the probability of all report com-
binations given any state of the coins. Note that the likeli-
hoods are independent of the reports St−1 of the preceding
stage t, and that the reports Rujt and Rv(3−j)t at stage t
are independent of each other too. Moreover, notice that γ
is the same for each report, expressing that reports at the
same stage are equally reliable. Finally, the value γ is close
to zero, since the content of the reports are probable.4

These priors and likelihoods determine a full probability
function P0 over F . By Bayes’ rule, each probabilistic judg-
ment at a later update stage is thereby fixed as well. We
obtain the following posteriors:

Time t 0 1 2 3

After learning > R11
1 R00

2 R1
13

Odds for X11 1 1 γ2 γ

Odds for X10 1 γ γ 1

Odds for X01 1 γ γ γ3

Odds for X00 1 γ2 1 γ2

Prob. Evidence 1 1
4

1
4
γ2 1

4
γ3

After the first update stage with R11
1 , when the agent has

received reports on the coins in both boxes, she is highly
confident that both coins have landed heads. After the sec-
ond pair of reports R00

2 , the agent is confident that both
coins have landed tails. Finally, after Elmer’s report R1

13,
the agent has revised her opinion about the coin in box 1
while leaving her opinion about the coin in box 2 unchanged.

Natural assumptions about the relationship amongst the
reports, however, lead the agent to assign high probability
to the event that both coins are lying heads up, as predicted
by postulate I2.

The reports are dependent
The meta-information in the example may be such that
Elmer’s report also encourages the agent to change her mind
about the coin in the second box. We can organize the
Bayesian model in such a way that Elmer’s report indeed has
these consequences. Specifically, for t < 3 we may choose

P0(Ruvt |Xik ∩ St−1) =

1
1+2γ1+t+γ2+t

×


1 if u = i and v = k,

γ1+t if either u 6= i, v = k

or u = i, v 6= k,

γ2+t if both u 6= i, v 6= k.

and use the likelihood of Equation (1) for t = 3. This indi-
cates that to some extent, the reports stand or fall together:
if one of the reports at a particular stage is false, the other

4In order for later reports to overrule earlier ones, it suf-
fices to assume that for t > 1, the likelihoods are all 1

1+γ2
.

The present likelihoods indicate that reports also become
increasingly reliable.

one is less reliable as well. In this case, deteriorating re-
liability is a factor γ, but we may organize the likelihoods
differently to obtain different dependencies.

With the likelihood functions set up as above, we obtain
the following posterior probability assignments:

Time t 0 1 2 3

After learning > R11
1 R00

2 R1
13

Odds for X11 1 1 γ 1

Odds for X10 1 γ2 γ2 γ

Odds for X01 1 γ2 γ2 γ4

Odds for X00 1 γ3 1 γ2

Prob. Evidence 1 1
4

1
4
γ3 1

4
γ4

In words, the first two belief changes of the agent are as be-
fore: for small γ the beliefs shift from X11 to X00 with the
pairs of reports. But after the final report about the coin in
box 1, the agent also revises her opinion about the coin in
box 2. Importantly, this arises not because the final report
about the coin in box 1 has a direct bearing on our beliefs
concerning the coin in box 2, but rather because in shift-
ing the probability mass back towards X1

1 , the dominating
factor in the probability for X1

2 becomes P3(X1
2 |X1

1 ). The
belief dynamics is in this sense similar to the dynamics of
so-called analogical predictions (cf. [19]).

It might be suggested that the foregoing analysis somehow
fails to unfold what Stalnaker has in mind:

Because my sources were independent, my be-
lief revision policies, at one stage, will give prior-
ity to the [possibilities of one report being false]
over the [possibility of both reports being false].
(Were I to learn that [one report] was wrong, I
would continue to believe [the other report] and
vice versa.). (p. 207)

In a footnote, Stalnaker adds, “nothing [in] the theory as it
stands provides any constraints on what counts as a single
input, or any resources for representing the independence of
sources.”

We agree with the assertion that the AGM theory does not
itself furnish such resources and so in this sense the theory
is lacking. Indeed, the assertion has likeminded friends, who
when read air similar platitudes about other axiomatic the-
ories offering minimal rationality principles, theories which
also abstain from imposing substantial constraints on admis-
sible states of belief. But the assertion does not also serve
as a compelling excuse to advertise a poorly posed example
as a counterexample. A good counterexample is packaged
for self-assembly, equipped with details obviously relevant to
its evaluation and relevant to its challenge in a meaningful
debate about its significance.

In the present case, Stalnaker neglects to elaborate upon
the form of independence relevant to the example, and he
has not articulated the example in a way univocally suggest-
ing a particular form of independence. Even for a familiar
form of independence, the incomplete example may be sup-
plemented with details which conform to a reading according
to which the truth of either report is vastly more probable,
independently of the truth of the other report. Yet the de-
ficient example may also seek assistance with details which



conform to another reading in which independence finds ex-
pression in terms of correlated reliability of the two reports,
a reading consistent with independently varying reports.

Thus, a reply suggesting that our analysis somehow fails
to unfold what Stalnaker has in mind simultaneously under-
takes an obligation to articulate an argument supporting the
claim that a relevantly different reading warrants recognition
as an image of Stalnaker’s thoughts—or at least recognition
over our proposed readings.

Elmer and Carla’s reports are correlated
With some imagination, we can also provide a model in
which the pairs of reports are independent in the strictest
sense, and in which Elmer’s report is fully responsible for the
belief change regarding both coins. To achieve this we em-
ploy the likelihoods of Equation (1) for the first two stages,
but for the report of Elmer we use a rather gerrymandered
set of likelihoods:

P0(Ru13|Xik ∩Rvw2 ∩ S1) =

1
1+γ2+γ3+γ5

×


1 if u = i 6= v and w 6= k,

γ2 if u = i 6= v and w = k,

γ3 if u 6= i = v and w 6= k,

γ5 if u 6= i = v and w = k.

Notice that the conditions on the right cover all combi-
nations of indexes i, k, and v, but only half of their combi-
nations with u. The likelihood for the opposite values of u
follow, because the probability of Ru13 and R1−u

13 must add
up to 1.

Of course we may vary the exact conditions under which
Elmer’s report overturns the reports of both Carla and Dora.
Moreover, as before, the specific numerical values chosen
for the likelihoods only matter up to order of magnitude.
The likelihoods given here make sure that until stage 2 the
posteriors are as determined by Equation (1), and we have:

Time t 2 3

After learning R11
1 ∧R00

2 R1
13

Odds for X11 γ2 1

Odds for X10 γ γ

Odds for X01 γ γ2

Odds for X00 1 γ3

Prob. Evidence 1
4
γ2 1

4
γ4

Importantly, the likelihoods used to arrive at these posteri-
ors square with the example provided by Stalnaker: Elmer’s
report is most probably reliable and indeed overturns the
report by Carla. But the likelihoods are organized in such a
way that they also overturn Dora’s report under particular
circumstances.

The full story of the agent might be that Carla and Dora
use the same method to determine the state of their respec-
tive coins. Elmer almost always defers to Carla, unless he
suspects something is amiss with her method, in which case
he resorts to his own superior judgment. But he will only
suspect something if in actual fact both Carla and Dora re-
port falsely. Accordingly, conditional on both Carla’s and

Dora’s reports being false, the agent expects Elmer’s report
to be true and hence at odds with Carla’s. Similarly, on the
condition that Carla’s and Dora’s report are both true, the
agent considers it extremely probable that Elmer’s report is
true and in agreement with Carla’s. Finally, if either Carla’s
or Dora’s report is false, the agent considers Elmer’s report
to be most probably in line with Carla’s, although less prob-
ably so if Carla’s report is actually the false one. The agent
imagines that Elmer tends to agree with Carla because he
does not suspect anything is wrong with her method, and
hence most likely defers to her.

Taking a step back, we admit that there will be many more
ways of filling in the priors and likelihoods so as to represent
particular aspects of the meta-information. However, the
details of the full solution space need not concern us here.
At this point, we simply note that the puzzle allows for
Bayesian models that accommodate a range of intuitions.

5. NONSTANDARD PROBABILITY
As we have already noted, the Bayesian model in the previ-
ous section does not, by itself, offer a response to Stalnaker’s
challenge to the AGM-based theory of iterated belief revi-
sion. In this section, we explain precisely how the Bayesian
model does in fact suggest a solution to Stalnaker’s chal-
lenge which is in line with the standard assumption of the
AGM theory of belief revision. The key step is to forge a
connection between the AGM theory of belief revision and
nonstandard probability measures. This connection between
AGM and nonstandard probability measures is not surpris-
ing given the results in Appendix B of [17] relating non-
monotonic logics with nonstandard probabilities.5

The key observation is that our discussion of the Bayesian
model in the previous section and the conclusions we draw
regarding Stalnaker’s example do not depend on the spe-
cific values of the likelihoods used to calculate the agents’
posterior beliefs. What is important are the order of mag-
nitudes. Indeed, we can assume that the likelihoods are
arbitrarily small and still derive the same qualitative conse-
quences about belief change from the model. So if we repre-
sent the agents’ full belief states by nonstandard probability
measures and reinterpret the Bayesian model in those terms,
we obtain a model that complies to the AGM postulates,
and that nevertheless captures the role of meta-information
in the desired way.

In the remainder of this section, we formally connect the
nonstandard probability measures and the AGM theory of
belief revision.

Definition 1. Let A be an algebra over a set of states Ω,
and let ∗R be a nonstandard model of the reals. A ∗R-
valued probability function on A is a mapping µ : A → ∗R
satisfying the following properties:

(i) µ(A) ≥ 0 for every A ∈ A ;

(ii) µ(Ω) = 1;

(iii) For all disjoint A,B ∈ A : µ(A ∪B) = µ(A) + µ(B).

We say that µ is regular if µ(A) > 0 for every A ∈ A ◦

(where A ◦ is A without the emptyset).
5In what follows, we assume the reader is familiar with the
basic concepts of nonstandard analysis. See [11] for a dis-
cussion.



For a limited hyperreal6 r ∈ ∗R, let st(r) be the unique real
number infinitely close to r. Given a ∗R-valued probability
function µ on an algebra A , a collection B ⊆ A , an event
E ∈ A , and r ∈ ∗[0, 1], let:

str(µ(B|E)) :=

{
{A ∈ B : st(µ(A|E)) ≥ r} if µ(E) > 0;

{A ∈ B : st(µ(A)) ≥ r} otherwise.

When A is finite, we associate a set Kµ ∈ A by setting:

Kµ :=
⋂

st1(µ(A |Ω)).

Observe that Kµ is consistent, since whenever st(µ(A)) = 1
and st(µ(B)) = 1 for some A,B ∈ A , st(µ(A) + µ(B) −
µ(A ∪ B))) = st(µ(A)) + st(µ(B)) − st(µ(A ∪ B))) and so
st(µ(A∩B)) = 1. Deifne an operator ∗µ by setting for every
E ∈ A :

Kµ ∗µ E :=

{⋂
st1(µ(A |E)) if E ∈ A ◦;

∅ otherwise.

As before, we omit subscripts when there is no danger of con-
fusion. The precise connection between nonstandard prob-
ability measures and the AGM theory of belief revision is
given by the following Proposition:

Proposition 1. Let A be a finite algebra over Ω, and let
K ∈ A ◦. Then ∗ is a belief revision operator for K if and
only if there is a regular ∗R-valued probability function µ on
A such that K = Kµ and ∗ = ∗µ.

Remark 1. There is also an important connection with
lexicographic probability systems in the sense of of [4] (cf.
[14] for a full discussion). Given a finite algebra A , there is
an obvious one-to-one correspondence between conditional
probability functions and lexicographic probability systems
with disjoint supports. However, even on a finite algebra,
there is no nontrivial one-to-one correspondence between lex-
icographic probability systems with disjoint supports and ∗R-
valued probability functions. In addition, it is clear from
the connection between lexicographic probability systems and
conditional probability functions that in general while it may
be that ∗P = ∗P ′ and KP = KP ′ it does not follow that
P = P ′ and indeed ∗µ = ∗µ′ and Kµ = Kµ does not entail
that µ = µ′.

Remark 2. If one wishes to admit zero probabilities in
the nonstandard setting, one may introduce the concept of
a ∗R-valued (full) conditional probability function, there-
upon defining a revision operator as for ∗R-valued probabil-
ity functions, without the implicit requirement of regularity.

With this connection between the AGM postulates and
Bayesian models using nonstandard probability measures in
place, let us return to the example of Stalnaker. In virtue of
the connection, we can now reinterpret the Bayesian mod-
els of the example to obtain models for the dynamics of
full belief that comply to the AGM postulates, while ac-
commodating the role of meta-information in the right way.
Specifically, we can make γ, the central parameter in the
definition of the likelihoods in Section 4, arbitrarily small.
In the tables detailing the probabilistic belief states from the
example, we thereby set all entries to the extremal values 0

6A hyperreal r ∈ ∗R is said to be limited if there is a (stan-
dard) natural number n such that |r| ≤ n.

or 1. Depending on how the meta-information on the de-
pendence of reports is spelled out, the belief dynamics thus
retains the desired qualitative features.

6. COUNTEREXAMPLES VS MISAPPLICA-
TIONS

The immediate upshot of the analysis in the previous section
is that the puzzle from [21] does not present insurmountable
problems for a theory of iterated belief revision. After all,
the nonstandard probabilistic models present us with a for-
mally worked out revision policy. In what follows we present
an evaluation of what this analysis achieves and a more nu-
anced view on the status of the counterexample.

We would like to flag that it is not clear from his pa-
per that Stalnaker thinks the example reveals fundamental
limitations for the AGM theory of iterated belief revision.
Therefore, rather than thinking that the models prove him
wrong, we think of their potential virtue as being more pos-
itive: they indicate how a belief revision policy can incorpo-
rate particular kinds of meta-information. The nonstandard
Bayesian models allow us to systematically accommodate
information that, in the words of Stalnaker, pertains to the
conceptual, causal, and epistemic relations among factual
information items. We chose to focus on information that
concerns the reliability of the reports provided, and the re-
lations that obtain between those reliabilities. The claim
is certainly not that we have thereby exhausted the meta-
information that may be relevant in the puzzle. But at least
we have illustrated how such meta-information may come
into play in a Bayesian model complying to the basic AGM
postulates.

Our illustration allows us to draw some general lessons
about the balance between counterexamples and misapplica-
tions in the context of modeling belief dynamics. The mod-
els bring out how tentative counterexamples can be over-
come by carefully explicating various aspects from the prob-
lematic example case. Several categories of analysis deserve
further analysis. First, a proper conceptualization of the
event and report structure is crucial: we need a sufficiently
rich structure of events, messages, epistemic states and the
like to express all the meta-information. Note, however, that
such a conceptualization is never part and parcel of the the-
ory about the belief dynamics itself. A theory needs to be
able to accommodate the conceptualization, but other than
that it hardly counts in favor of a theory that the modeler
gets this conceptualization right. Secondly it stands out that
we must allow ourselves all the requisite tools for represent-
ing beliefs. In the puzzles at hand, the language must allow
us to separate reports by different agents from the content
of the reports. And most importantly, the expressions of
belief must allow for some notion of graded disbelief or, as
one may also put it, memory.

It may be thought that we think any purported counterex-
ample can in the end be accommodated by a nonstandard
Bayesian model or similar structure, and that any type of
meta-information is amenable to the kind of treatment just
illustrated. Are there any genuine counterexamples to be
had, or do we want to reduce everything to misapplication?
Here we get to the negative part of our perspective on the
discussion on counterexamples to the theory of belief revi-
sion. We do believe that the theory of AGM belief revision
and its probabilistic counterpart may have fundamental lim-



itations. In the remainder of this section, we first consider
one specific aspect in which the probabilistic models we have
provided miss the mark, suggesting that the counterexam-
ples still stand unresolved. Secondly, we sketch some results
from [13] on how far Bayesian models can come in capturing
meta-information, and thereby provide a prospect for the
construction of counterexamples.

Researchers coming from the literature on iterated be-
lief revision and current dynamic logics of belief revision,
may be unsatisfied with the Bayesian models presented here
as a solution to Stalnaker’s counterexample. The Bayesian
models represent belief change by conditioning (or one of
its generalization, such as Jeffrey or Adam’s conditioning).
It can be argued that this is not a truly dynamic model
of belief change. If the challenge from Stalnaker’s example
is to capture the belief changes while maintaining the dy-
namic character, then the Bayesian models presented here
do not present a proper rebuttal. In turn, we suggest that
purported counterexample must place more emphasis on the
dynamic aspect of the problem.

This raises an interesting question for future research.
There seems to be a trade-off between a rich set of states
and event structure, and a rich theory of “doxastic actions”
(eg., as found in the literature on dynamic logics of belief
revision [22, 3]). How should we resolve this trade-off when
analyzing counterexamples to postulates that are intended
to apply to belief changes over time. More generally, what
is it about a dynamic model of belief revision that makes it
truly dynamic?

We now turn to another prospect of genuine counterex-
amples to the theory of belief revision. For readers familiar
with the flexibility of Bayesian models, it is not surpris-
ing that they allow us to formalize the relevant aspects of
the meta-information in Stalnaker’s example. The challenge
seems rather to find out under what conditions we can ig-
nore the meta-information, which is often not specified in
the description of an example. Halpern and Grünwald [13]
identify such a condition for Bayesian models, called coars-
ening at random or CAR for short. They study situations in
which conditioning on a “naive” space gives the same results
as conditioning on a“sophisticated”space’. Generally speak-
ing, a “sophisticated” space is one that includes an explicit
description of the relevant meta-information (eg., the reports
from the sources and how they may be correlated). In the
full paper we show how to apply this condition to the AGM
framework. Or more precisely, we generalize the condition
from [13] to nonstandard probability measures and then use
the general link between AGM and nonstandard probability
measures to apply the condition to AGM. In this extended
abstract, however, we only have space to sketch the main
idea of our result.

As indicated, CAR tells us how probabilities in naive and
sophisticated spaces need to relate in order for updating by
conditionalisation to be a correct inference rule in the naive
space. But recall that in the generalization to nonstandard
probability models, such updates follow the AGM postu-
lates. The direct link to the examples given above is that
whenever we run into a tentative counterexample, we can
blame the failures of the update rule on a failure of CAR
and start the repairs by building a more sophisticated state
space. In cases like that, the culprit is arguably the applica-
tion of the theory of belief revision: in a more refined space
the update will again comply to AGM.

The same line of reasoning can now be used to clarify when
misapplication turns into counterexample. In particular, we
might argue that genuine counterexamples to AGM are cases
in which we cannot blame failures of CAR. We see at least
two ways in which this might happen. First, we might simply
have no formalization of the problem case that allows for a
representation of the update as a conditioning operation.
Perhaps we cannot construct a sophisticated space, because
the report or event structure does not allow for the definition
of a partition of possible learning events. And second, it may
so happen that AGM outputs an unintuitive epistemic state,
even though we have employed an independently motivated
formalization of the problem case. Attempts to redo the
construction of a sophisticated space, just in order to remedy
the failure of CAR, will be contrived. Instead, it may seem
fair to blame the theory of belief revision itself.

In sum, we submit that the condition CAR may help us to
formulate a principled distinction between misapplications
of, and genuine counterexamples against a theory for belief
dynamics. The appropriate response to the former is to
refine the model and run the belief dynamics on the more
refined space. Genuine counterexamples of the theory, on
the other hand, are such that refinements of the model are
impossible or contrived.

7. CONCLUSION
Our contribution in this paper is conceptual. First we have
made explicit the meta-information implicit in one of Stal-
naker’s counterexample to a postulate of iterated belief re-
vision. We have done so by identifying the salient meta-
information in a heuristic model using plausibility order-
ings, by formalizing this information in a Bayesian model,
and finally by generalizing this Bayesian model towards non-
standard probability models and showing that such models
comply to the AGM postulates. This link between AGM and
nonstandard probabilities allows us to use the characteriza-
tion of the CAR condition to classify when a more refined
state space can be used to explain the counterexample. Gen-
uine counterexamples to AGM and iterated belief revision
are cases when we cannot blame the structure of the state
space. Our eventual goal is to develop a framework in which
this intuition can be used to classify purported counterex-
amples.
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APPENDIX
A. THE AGM POSTULATES

In what follows, K is a deductively closed and consistent
set of propositional formulas and ϕ,ψ are propositional for-
mulas. Furthermore, Cn(X) denotes the propositional con-
sequences of a set X of formulas.

The following are the basic revision postulates of AGM
belief revision:

AGM 1 (Closure) K ∗ ϕ = Cn(K ∗ ϕ).

AGM 2 (Success) ϕ ∈ K ∗ ϕ.

AGM 3 (Inclusion) K ∗ ϕ ⊆ Cn(K ∪ {ϕ}).
AGM 4 (Vacuity) If ¬ϕ 6∈ K, then

Cn(K ∪ {ϕ}) ⊆ K ∗ ϕ.

AGM 5 (Consistency) If Cn({ϕ}) 6= For(L),
then K ∗ ϕ 6= For(L).

AGM 6 (Extensionality) If Cn({ϕ}) = Cn({ψ}),
then K ∗ ϕ = K ∗ ψ.

These six basic postulates are elementary requirements of
belief revision and taken by themselves are much too per-
missive. Additional postulates are required to rein in this
permissiveness and to reflect a conception of relational belief
revision.

AGM 7 K ∗ (ϕ ∧ ψ) ⊆ Cn((K ∗ ϕ) ∪ {ψ}).
AGM 8 If ¬ψ /∈ K ∗ ϕ, then

Cn(K ∗ ϕ ∪ {ψ}) ⊆ K ∗ (ϕ ∧ ψ).

In the context of a propositional model (where K is now
a set of states and E,F are also sets of states), all eight
postulates may be reduced to four:

Success (∗1) K ∗ E ⊆ E.

Conditionalization (∗2) If K ∩ E 6= ∅, then
K ∗ E = K ∩ E.

Consistency (∗3) If E 6= ∅, then K ∗ E 6= ∅.
(Arrow) (∗4) If (K ∗ E) ∩ F 6= ∅, then

(K ∗ E) ∩ F = K ∗ (E ∩ F ).

We say that ∗ is a belief revision operator for K if it satisfies
postulates (∗1) – (∗4). See [20] for an extended discussion.

A.1 AGM and conditional probability
In order to facilitate the relationship between the AGM

theory of belief revision and nonstandard probability mea-
sures, we point out the relationship between AGM and con-
ditional probability measures.

Definition 2. Let A be an algebra over a set of states Ω.
A (full) conditional probability function on A is a mapping
P : A ×A → R satisfying the following properties:

(i) P (·|E) is a finitely additive probability function for ev-
ery E ∈ A ◦;

(ii) P (A|E) = 1 for every A,E ∈ A such that E ⊆ A;

(iii) For all A,B,E ∈ A such that A ⊆ B ⊆ E:

P (A|E) = P (A|B)P (B|E).

Here A ◦ is A without the null event ∅. Observe that
P (·|∅) ≡ 1.

Given a conditional probability function P on a finite al-
gebra A , we associate a set KP ∈ A by setting:

KP := supp P (·|Ω),



where as usual supp P (·|E) denotes the probabilistic sup-
port of P (·|E), i.e., the smallest set in A receiving proba-
bility one on the condition that E obtains. Define a belief
revision operator ∗P by setting for every E ∈ A :

KP ∗P E := supp P (·|E).

We drop subscripts when the context is clear. The following
is easily verified.

Lemma 1. Let P be a conditional probability function on
a finite algebra A over Ω. Then ∗P is a belief revision op-
erator for KP .

We also have the converse for consistent K, resulting in the
following proposition.

Proposition 2. Let A be a finite algebra over Ω, and let
K ∈ A ◦. Then ∗ is a belief revision operator for K if and
only if there is a conditional probability function P on A
such that K = KP and ∗ = ∗P .

This concludes our exposition of AGM in relation to con-
ditional probability functions.

A.2 Nonstandard probability
We now show how a similar link can be forged between

AGM and nonstandard probability functions, admitting the
possibility of arbitrarily small probability values.

Recall that given a ∗R-valued probability function µ on
an algebra A , a collection B ⊆ A , an event E ∈ A , and
r ∈ ∗[0, 1]:

str(µ(B|E)) :=

{
{A ∈ B : st(µ(A|E)) ≥ r} if µ(E) > 0;

{A ∈ B : st(µ(A)) ≥ r} otherwise.

Where A is finite, we associate a set Kµ ∈ A :

Kµ :=
⋂

st1(µ(A |Ω)).

Define an operator ∗µ by setting for every E ∈ A :

Kµ ∗µ E :=

{⋂
st1(µ(A |E)) if E ∈ A ◦;

∅ otherwise.

As before, we omit subscripts when there is no danger of
confusion.

Lemma 2. Let µ be a regular ∗R-valued probability func-
tion on a finite algebra A over Ω. Then ∗µ is a belief revi-
sion operator for Kµ.

Proof. Clearly postulates (∗1) and (∗3) are satisfied.
While routine, for the sake of completeness we verify postu-
lates (∗2) and (∗4) in turn.

(∗2) Suppose that K ∩ E 6= ∅. Let A ∈ A be such that
K ∗ E ⊆ A. Then st(µ(A|E)) = 1. Observe that:

st(µ(A ∪ Ec)) = st(µ(E)µ(A|E) + µ(Ec))

= st(µ(E))st(µ(A|E)) + st(µ(Ec))

= st(µ(E) + µ(Ec))

= 1.

It follows that K ∩ E ⊆ A, establishing that K ∩ E ⊆
K ∗E. Now let A ∈ A be such that K ∩E ⊆ A. Then
K ⊆ A ∪ Ec and so st(µ(A ∪ Ec)) = 1, whence:

st(µ(E)) = st(µ(Ac ∩ E)) + st(µ(A ∩ E))

= st(µ(A ∩ E))

= st(µ(A|E))st(µ(E)).

Thus, since K∩E 6= ∅, it follows that st(µ(E)) > 0 and
therefore st(µ(A|E)) = 1, whereby K ∗ E ⊆ A. Hence,
K ∗ E ⊆ K ∩ E.

(∗4) Suppose that (K ∗E)∩F 6= ∅. Let A ∈ A be such that
K ∗ (E ∩ F ) ⊆ A. Then st(µ(A|E ∩ F )) = 1, so:

st(µ(A ∪ F c|E)) = 1− st(µ((Ac ∩ F )|E))

= 1− st(µ(Ac|F ∩ E))st(µ(F |E))

= 1.

Hence, (K∗E)∩F ⊆ A, showing that (K∗E)∩F ⊆ K∗
(E∩F ). Now let A ∈ A be such that (K ∗E)∩F ⊆ A.
Then st(µ(A ∪ F c|E)) = 1, and since (K ∗E) ∩ F 6= ∅,
it follows that st(µ(F |E)) 6= 0, so:

st(µ(A|E ∩ F ))) = 1− st(µ(Ac|E ∩ F )))

= 1− st(
µ((Ac ∩ F )|E)

µ(F |E)
)

= 1− st(µ((Ac ∩ F )|E))

st(µ(F |E))

= 1.

Therefore, K∗(E∩F ) ⊆ A, so K∗(E∩F ) ⊆ (K∗E)∩F ,
as desired.

Proposition 3. Let A be a finite algebra over Ω, and let
K ∈ A ◦. Then ∗ is a belief revision operator for K if and
only if there is a regular ∗R-valued probability function µ on
A such that K = Kµ and ∗ = ∗µ.

Proof. The ‘if’ part has been established in Lemma 2.
We turn to the ‘only if’ part. Let P be a conditional prob-
ability function on A such that K = KP and ∗ = ∗P , as
given by Proposition 2. Then there is a partition (πm)m<n of
Ω in A and a sequence (µm)m<n of real-valued probability
functions on A such that:

(a) πm = supp µm for each m < n;

(b) P (·|E) = µmin{m:E∩πm 6=∅}(·|E) for every E ∈ A ◦.

Define a regular ∗R-valued probability function µ on A by
setting for every A ∈ A :

µ(A) := µ0(A) +
∑

0<m<n

(µm(A)− µ0(A))εm,

where ε is a positive infinitesimal. We claim that (i) KP =
Kµ and that (ii) ∗P = ∗µ. Clearly K ∗P ∅ = K ∗µ ∅. Now
let E ∈ A ◦. Set m0 := min{m : E ∩ πm 6= ∅}, and for each
m < n, let νm := 0 if m = 0 and µm otherwise. Then for
every A ∈ A :

st(µ(A|E))

= st(
µ0(A∩E)+

∑
0<m<n(µm(A∩E)−µ0(A∩E))εm

µ0(E)+
∑

0<m<n(µm(E)−µ0(E))εm
)

= st(
µm0

(A|E)+
∑
m0<m<n

µm(A∩E)−νm(A∩E)
µm0

(E)
εm−m0

1+
∑
m0<m<n

µm(E)−νm(E)
µm0 (E)

εm−m0
)

=
st(µm0

(A|E)+
∑
m0<m<n

µm(A∩E)−νm(A∩E)
µm0 (E)

εm−m0 )

st(1+
∑
m0<m<n

µm(E)−νm(E)
µm0

(E)
εm−m0 )

= µm0(A|E).

Then by property (b), claims (i) and (ii) follow, thereby
establishing the desired conclusion.

Remark 3. The sequence (µm)m<n of real-valued prob-
ability functions in the proof of Proposition 3 is a lexico-
graphic probability system as discussed in Remark 1.


